Biocompatibility of Engineered Nanoparticles
نویسندگان
چکیده
منابع مشابه
Improving the Magnetic Resonance Imaging Contrast and Detection Methods with Engineered Magnetic Nanoparticles
Engineering and functionalizing magnetic nanoparticles have been an area of the extensive research and development in the biomedical and nanomedicine fields. Because their biocompatibility and toxicity are well investigated and better understood, magnetic nanoparticles, especially iron oxide nanoparticles, are better suited materials as contrast agents for magnetic resonance imaging (MRI) and f...
متن کاملBiocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups
BACKGROUND AND METHODS Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10-30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalizat...
متن کاملBiocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.
The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitation...
متن کاملIn vitro biocompatibility of low and medium molecular weight chitosan–coated Fe3O4 nanoparticles
Objective(S): The chitosan - Fe3O4 core - shell nanoparticles were synthesized. The nanoparticles should be coated properly in the shape of core-shell, so that they remain hidden from the body's immune system after coating. Effects of different molecular weight in coating were investigated. Methods: Nanoparticles coated with low and ...
متن کاملEfficient encapsulation of Fe₃O₄ nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications.
Self-assembly of viral coating proteins encapsulating functional nanoparticles provides a new class of biomaterials with robust chemical and physical properties for potential applications in functional imaging, and therapeutic or diagnostic agent delivery. Herein, a straightforward method is demonstrated for efficient encapsidation of magnetic nanoparticles into the engineered virus-like partic...
متن کامل